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Abstract RNA polymerase II (Pol II) pausing is a general regulatory step in transcription, yet the

stability of paused Pol II varies widely between genes. Although paused Pol II stability correlates

with core promoter elements, the contribution of individual sequences remains unclear, in part

because no rapid assay is available for measuring the changes in Pol II pausing as a result of altered

promoter sequences. Here, we overcome this hurdle by showing that ChIP-nexus captures the

endogenous Pol II pausing on transfected plasmids. Using this reporter-ChIP-nexus assay in

Drosophila cells, we show that the pausing stability is influenced by downstream promoter

sequences, but that the strongest contribution to Pol II pausing comes from the initiator sequence,

in which a single nucleotide, a G at the +2 position, is critical for stable Pol II pausing. These results

establish reporter-ChIP-nexus as a valuable tool to analyze Pol II pausing.

DOI: https://doi.org/10.7554/eLife.41461.001

Introduction
RNA polymerase II (Pol II) pausing is a key regulatory step in metazoan gene regulation. After initiat-

ing transcription at the transcription start site (TSS), Pol II often pauses 30–50 bp downstream of the

TSS, before being released by p-TEFb into productive elongation (Adelman and Lis, 2012;

Gaertner and Zeitlinger, 2014; Yamaguchi et al., 2013). Genome-wide profiling of Pol II and

nascent transcripts suggest that pausing is widespread across the genome (Core et al., 2008;

Muse et al., 2007; Nechaev et al., 2010; Zeitlinger et al., 2007), and inhibition of p-TEFb blocks

the productive elongation of the majority of active genes (Chao and Price, 2001; Jonkers et al.,

2014; Ni et al., 2008). Together, these results suggest that pause release is a general and obliga-

tory step in transcription.

Despite evidence that pausing is a common feature of transcription, the stability of paused Pol II

varies widely between genes. While the degree of pausing may be influenced by transcriptional acti-

vation (Buckley et al., 2014; Danko et al., 2013; Min et al., 2011; Rahl et al., 2010), differences in

Pol II pausing across the genome are, to a large extent, a property of the promoter. In the early Dro-

sophila embryo, Pol II pausing is most frequently found at developmental control genes, and a large

portion of these genes remain highly paused throughout embryonic development independently of

their expression (Gaertner et al., 2012; Zeitlinger et al., 2007). The promoter sequences of such

highly paused genes are notably enriched for specific core promoter elements (Hendrix et al.,

2008), and promoter swapping experiments demonstrate that Pol II pausing depends on the pro-

moter sequence (Lagha et al., 2013). However, despite the evidence that Pol II pausing depends on

the promoter sequence, how core promoter elements regulate Pol II pausing remains elusive.

Drosophila is ideally suited to study the relationship between promoter sequences and Pol II

pausing since a large fraction of promoters in the Drosophila genome have clearly defined core
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promoter sequences that are associated with strong Pol II pausing (Chen et al., 2013;

Gilchrist et al., 2010; Hendrix et al., 2008; Juven-Gershon and Kadonaga, 2010; Kwak et al.,

2013; Lee et al., 1992; Vo Ngoc et al., 2017b). Moreover, these highly paused promoters typically

undergo focused initiation, during which Pol II begins transcription at a defined genomic position

within a window of a few nucleotides (Hoskins et al., 2011; Kwak et al., 2013; Ni et al., 2010).

These promoters are easier to study than those with dispersed initiation, where Pol II initiation

occurs throughout a genomic region of ~100 bp. Finally, these highly paused promoters do not typi-

cally show strong +1 nucleosomes near the pause site, making Pol II pausing less likely to be depen-

dent on chromatin context (Benjamin and Gilmour, 1998; Bondarenko et al., 2006; Brown et al.,

1996; Gaertner et al., 2012; Gilchrist et al., 2010; Izban and Luse, 1991; Jimeno-González et al.,

2015; Kwak et al., 2013; Rach et al., 2011).

These convenient and easy-to-study highly paused promoters in Drosophila have features that

are similar to those of mammalian promoters. Their core promoter elements are recognized by the

basal transcription factor TFIID, a highly conserved multi-subunit complex whose promoter binding

specificity appears to be conserved across metazoans. For example, recent cryo-EM structures of

TFIID show human TFIID bound to all core promoter elements of the synthetic Drosophila super

core promoter, including the sequences enriched among highly paused promoters (Louder et al.,

2016; Patel et al., 2018). This suggests that the highly paused promoters in Drosophila have more

elaborate sequence elements, yet rely on conserved metazoan transcription machinery for their

function.

TFIID interacts with sequence elements at three regions along the core promoter, which are

spaced in a fixed distance from each other (Juven-Gershon and Kadonaga, 2010; Louder et al.,

2016; Patel et al., 2018; Vo Ngoc et al., 2017b). The first contact occurs at the TATA box, a well-

studied core promoter element that is located ~30 bp upstream of the transcription start site and is

bound by TATA-binding protein (TBP), a component of TFIID (Chasman et al., 1993; Kim et al.,

1993a; Kim et al., 1993b). The second contact occurs at the initiator (Inr) sequence, which overlaps

the nucleotide where Pol II initiates transcription (referred to as the +1) (Chalkley and Verrijzer,

1999; Emami et al., 1997). The Inr is the most common core promoter element in metazoans and is

often the only identifiable core promoter element in mammalian promoters (Hoskins et al., 2011;

Ohler et al., 2002; Smale and Kadonaga, 2003; Vo Ngoc et al., 2017a). The third DNA region

contacted by TFIID lies ~30 bp downstream of the transcription start site. It contains short sequence

motifs such as the downstream promoter element (DPE), motif ten element (MTE), and the pause

button (PB) (Burke and Kadonaga, 1996; Hendrix et al., 2008; Kutach and Kadonaga, 2000;

Lim et al., 2004; Purnell et al., 1994). Despite extensive studies on TFIID-promoter interactions,

how core promoter elements affect Pol II pausing is not clear.

Measurements of paused Pol II across the genome, including with ChIP-seq, normally do not

assess the duration of pausing directly, but rather represent steady-state Pol II occupancy across a

population of cells, in which paused Pol II turns over at different rates. To measure the stability of

paused Pol II more directly, a time-course analysis in response to triptolide treatment can be per-

formed. Triptolide inhibits initiation globally and prevents new Pol II from reaching the pause posi-

tion (Jonkers et al., 2014; Titov et al., 2011). After triptolide treatment, previously existing paused

Pol II is lost over time, either by transitioning into elongation or due to premature transcript termina-

tion. The decay rate of paused Pol II under these conditions is then proportional to the stability of

paused Pol II (Henriques et al., 2013; Jonkers et al., 2014; Krebs et al., 2017).

We recently performed such time-course measurements of paused Pol II across the Drosophila

melanogaster genome using a high-resolution exonuclease-based ChIP-seq protocol (ChIP-nexus).

This assay has the advantage of distinguishing Pol II signal at the site of initiation and pausing, and

thus the Pol II half-life calculations are based on paused Pol II, rather than total Pol II at the promoter

(Shao and Zeitlinger, 2017). These experiments confirmed the large differences in pausing stability

across promoters and showed significant correlations with core promoter elements. However,

whether these promoter sequences directly regulate Pol II pausing or whether they are statistically

over-represented among promoters with high or low Pol II pausing stability is not known.

A better understanding of the relationship between the core promoter sequence and pausing

behavior is difficult to obtain with current techniques. On one hand, traditional biochemical or

reporter gene assays usually use gene expression and not Pol II occupancy as the readout since Pol

II pausing was not yet known to be a general regulatory step in transcription when these assays were
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developed. As a result, in vitro assays for studying Pol II pausing are very limited, and it is not even

clear whether Pol II pausing requires a natural chromatin context (Benjamin and Gilmour, 1998;

Bondarenko et al., 2006; Brown et al., 1996; Izban and Luse, 1991). On the other hand, Pol II

pausing is readily detected by genomics techniques in vivo, but manipulating endogenous genomic

promoter sequences to analyze their links to Pol II pausing is time consuming. Therefore, having an

assay that measures Pol II pausing outside the normal genomic context would allow quick promoter

mutagenesis and greatly facilitate studying mechanistic features in the regulation of Pol II pausing.

Although traditional reporter assays were not designed to detect Pol II pausing, it is nevertheless

possible that Pol II pausing occurs in some of these assays (Benjamin and Gilmour, 1998). We rea-

soned that if paused Pol II occurred on a plasmid, it would be possible to combine the efficiency of

plasmid-based sequence mutagenesis with Pol II ChIP-nexus to rapidly test how alterations in pro-

moter sequences affect Pol II pausing. Unexpectedly, we found that paused Pol II can easily be

detected on a plasmid by ChIP-nexus and its footprint closely recapitulates the Pol II footprint at the

endogenous locus. Using this novel assay, termed reporter-ChIP-nexus, we analyzed the contribution

of various core promoter elements and discovered that the Inr sequence, when containing a G at

position +2, plays an unexpectedly large and dominant role in stabilizing paused Pol II. Taken

together, we show that reporter-ChIP-nexus combines the ease of plasmid-based sequence muta-

genesis with high-resolution ChIP profiling, thereby serving as a valuable tool for dissecting the role

of specific sequences in Pol II pausing.

Results

Promoter-specific Pol II pausing properties are recapitulated on the
reporter
To test whether Pol II pausing is recapitulated on a plasmid, we used a GFP reporter, which has

moderate expression when transfected into D. melanogaster Kc167 cells and allows rapid insertion

of any type of promoter sequence (Figure 1A and Figure 1—figure supplement 1). After transient

transfection of the reporter construct, the entire cell extracts were used for ChIP-nexus since there is

no straightforward method for isolating plasmids from fixed cells before chromatin immunoprecipita-

tion. Due to the high number of plasmids per cell, we found that only moderate sequence coverage

(~5 to 10 million unique reads per sample) was sufficient to obtain high ChIP signal from the plasmid.

Sequencing the endogenous genome in addition to the plasmid also provided a convenient internal

control for the ChIP quality and for normalizing samples with each other.

To explore whether Pol II pausing can be detected on this plasmid, we first cloned in the super

core promoter (SCP) (Figure 1B and Table S1). This synthetic promoter contains correctly positioned

TATA, Inr, MTE, DPE and PB core promoter elements such that they are recognized by TFIID and

efficiently direct Pol II transcription (Juven-Gershon et al., 2006; Louder et al., 2016). Since it is a

synthetic sequence, it can be unambiguously distinguished from the endogenous promoters in the

genome. After transfection of the plasmid, we used ChIP-nexus to map Pol II on this promoter. Inter-

estingly, we observed a strong accumulation of paused Pol II signal at the expected pausing posi-

tion, suggesting that Pol II can pause on the plasmid (Figure 1B).

To validate that transcription on this promoter indeed begins at the initiator sequence and thus

the accumulation of Pol II occurs downstream of transcription start site, we developed a gene-spe-

cific 5’ RNA sequencing protocol (Figure 2—figure supplement 2). This assay mapped the vast

majority of the 5’ ends of the transcribed RNA to the initiator sequence (Figure 1B), confirming that

the SCP functions as expected.

To test whether the Pol II pausing profile on the plasmids recapitulates the pattern of endoge-

nous promoters, we then cloned promoter sequences from Drosophila pseudoobscura into the

reporter. D. pseudoobscura promoters are sufficiently different from those in the melanogaster

genome (due to ~25 millions of years of divergence), thereby facilitating the unambiguous mapping

of Pol II signal on the plasmid.

Since the promoter sequences might have diverged in function between D. melanogaster and D.

pseudoobscura, we first performed Pol II ChIP-nexus analysis on a D. pseudoobscura cell line (ML83-

63) and analyzed the stability of paused Pol II after 1 hr triptolide treatment. After 1 hr triptolide

treatment, promoters with a Pol II half-life of ~5–10 min show strongly reduced Pol II pausing at the
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pause position and often show increased levels of Pol II at the site of initiation as previously

observed (Erickson et al., 2018; Krebs et al., 2017; Shao and Zeitlinger, 2017). In contrast, stably

paused promoters maintain high levels of Pol II at the pausing position with no noticeable increase

of Pol II at the site of initiation. This allowed us to identify promoters with strong differences in Pol II

pausing for further analysis (Figure 2—figure supplement 1).

In total, we selected eight pseudoobscura promoters of ~250 bp in length that had a variety of

known core promoter elements bound by TFIID (Table S1). We transfected each plasmid into D. mel-

anogaster Kc167 cells and mapped the initiation start sites using gene-specific 5’ RNA sequencing

(Figure 1—figure supplement 2). On all plasmids, the start sites mapped within a narrow window of

a few base pairs to the predicted Inr sequence (Figure 2A and Figure 2—figure supplement 2).

We then performed Pol II ChIP-nexus on the transfected cells and compared the Pol II profile on

each plasmid to the endogenous profile in D. pseudoobscura cells. Again, we detected strong Pol II

signal on all plasmids, precisely at the canonical pausing position. Moreover, the Pol II profile was in
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Figure 1. Reporter-ChIP-nexus captures paused Pol II. (A) Reporter-ChIP-nexus is performed by cloning

Drosophila pseudoobscura promoters or synthetic promoters into a simple GFP reporter and transfecting into D.

melanogaster Kc167 cells. The whole cell lysate from cross-linked cells is used to perform Pol II ChIP-nexus.

Exonuclease stop bases are then mapped and shown on the positive strand in red above the line, while reads

from the negative end are shown in blue below the line. (B) Results of reporter-ChIP-nexus reveal strong Pol II

pausing at the synthetic super core promoter (SCP), which contains the core promoter elements TATA, Inr, MTE,

DPE and PB (top). The position of transcriptional initiation is mapped by sequencing the 5’ end of the produced

RNA (bottom). The results for the SCP promoter show that the vast majority of RNAs start at the expected site of

initiation.

DOI: https://doi.org/10.7554/eLife.41461.002

The following figure supplements are available for figure 1:

Figure supplement 1. A simple GFP reporter that allows the fast insertion of any promoter sequence.

DOI: https://doi.org/10.7554/eLife.41461.003

Figure supplement 2. Workflow for gene-specific 5’ RNA sequencing, a method similar to RNA amplification of

cDNA ends (RACE).

DOI: https://doi.org/10.7554/eLife.41461.004
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most cases indistinguishable from the endogenous Pol II profile (Figure 2A and Figure 2—figure

supplement 2), with Pearson correlations similar to or slightly below those of replicate experiments

(Table S2 and S3). This indicates that lifting a promoter with TFIID-dependent core promoter ele-

ments out of its genomic chromatin context does not abolish Pol II pausing and confirms that the

pausing profile at those promoters is highly dependent on the promoter sequence.
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Figure 2. Reporter-ChIP-nexus recapitulates the endogenous Pol II pausing profile. (A) To obtain the endogenous

Pol II pattern of D. pseudoobscura promoters in the genome, ChIP-nexus was performed in a D. pseudoobscura

cell line. Results are shown for the pepck, comm2 and pk promoters. The same promoters were then examined

using reporter-ChIP-nexus in D. melanogaster Kc167 cells, which yielded patterns very similar to the endogenous

Pol II profiles. The transcription initiation sites were confirmed by 5’ RNA sequencing. (B) To determine the

stability of paused Pol II on the plasmid, transfected cells were treated with either DMSO (Control) or triptolide

(TRI) for 1 hr. The results show a relative reduction in Pol II similar to that of the endogenous loci after treating the

D. pseudoobscura cell line with TRI (see Figure 2—figure supplement 4). Therefore, reporter-ChIP-nexus reveals

gene-specific Pol II pausing stability on a plasmid.

DOI: https://doi.org/10.7554/eLife.41461.005

The following figure supplements are available for figure 2:

Figure supplement 1. Paused Pol II stability measurements at eight D. pseudoobscura promoters.

DOI: https://doi.org/10.7554/eLife.41461.006

Figure supplement 2. Reporter-ChIP-nexus recapitulates endogenous Pol II pausing.

DOI: https://doi.org/10.7554/eLife.41461.007

Figure supplement 3. Larger promoter region insertion is required for recapitulating Pol II pausing at RpL13A on

the plasmid.

DOI: https://doi.org/10.7554/eLife.41461.008

Figure supplement 4. Reporter-ChIP-nexus recapitulates gene-specific Pol II pausing stability.

DOI: https://doi.org/10.7554/eLife.41461.009
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To test the versatility of our assay, we also tested a D. pseudoobscura promoter that is more

likely dependent on the chromatin context. The promoter of the ribosomal gene RpL13A belongs to

the group of promoters that uses TCT as initiator element (Parry et al., 2010). These promoters

undergo focused initiation, but unlike other focused promoters, have a strong +1 nucleosome with

high levels of H3K4me3 (Figure 2—figure supplement 3). We found that Pol II pausing can be reca-

pitulated on the plasmid for RpL13A when a larger 2 kb region surrounding the core promoter was

cloned into the plasmid, but not with a smaller 300 bp region (Figure 2—figure supplement 3). The

plasmid with the larger region showed high levels of H3K4me3, similar to the endogenous Rpl13A

promoter, while the construct with the smaller insertion did not (Figure 2—figure supplement 3).

These results indicate that further technical optimization may be required for examining Pol II paus-

ing on plasmids at promoters where genomic context is essential. This would be consistent with pre-

vious studies indicating that plasmids may or may not be correctly chromatinized when transfected

into cells (Jeong and Stein, 1994; Reeves et al., 1985).

Focusing on the set of eight selected promoters, we next tested whether the stability of Pol II

after triptolide treatment is recapitulated on the plasmid. To directly compare the Pol II ChIP-nexus

profile on the plasmid between triptolide-treated and untreated cells, we used the same pool of

plasmid-transfected cells for both samples and normalized them to each other using the genome

reads. The results show that paused Pol II is indeed lost after treatment with triptolide and that the

degree of loss is proportional to the stability of Pol II on the endogenous promoter. For example,

some promoters (e.g. comm2) showed a strong reduction of paused Pol II after 1 hr triptolide treat-

ment, while others (e.g pk) displayed minimal loss (Figure 2B and Figure 2—figure supplement 4).

Taken together, these results suggest that Pol II not only pauses on the plasmid, but that the pro-

moter-specific stability of paused Pol II can, to some extent, be measured on a plasmid.

The Pol II pausing stability can be altered by changing the downstream
promoter sequence
Strong Pol II pausing correlates with the presence of downstream elements such as the PB, MTE and

DPE (Chen et al., 2013; Gaertner et al., 2012; Gilchrist et al., 2010; Hendrix et al., 2008;

Kwak et al., 2013; Shao and Zeitlinger, 2017). These sequences may be directly implicated in Pol II

pausing since they are located near the site of paused Pol II, and changing the position of the DPE

relative to the Inr alters Pol II pausing (Kwak et al., 2013). However, further functional evidence for

their role in Pol II pausing is lacking, and a detailed mechanistic dissection of these downstream

sequences using reporter-ChIP-nexus could be challenging. For example, sequences near the loca-

tion of paused Pol II would have to be altered, which could indirectly affect the ChIP-nexus profile of

Pol II, for example through altered protein-DNA crosslinking efficiency.

We therefore decided to broadly test the role of downstream sequences in Pol II pausing in our

initial study. We took two promoters with a short Pol II pausing half-life (Act5C and pepck) and

replaced the entire downstream promoter sequence with that of a stably paused promoter (pk or

dve) (Figure 3A and Figure 3—figure supplement 1). We then performed Pol II ChIP-nexus on

these hybrid promoters with or without triptolide treatment (we treated for 5 min since the wildtype

promoters have a short Pol II half-live). While it was difficult to judge whether the wildtype and

hybrid promoters had a different Pol II profile under control conditions, we found that a higher frac-

tion of paused Pol II was reproducibly maintained on the hybrid promoters after triptolide treatment

compared to the wild-type promoter (Figure 3B). Since the loss of Pol II at the pausing position after

triptolide treatment reflects the pausing stability, these data suggest that the replacement of the

downstream promoter sequence made Pol II pausing more stable.

To quantify the difference in Pol II pausing stability, we first calculated the relative loss of paused

Pol II between control and triptolide-treated samples for each construct. Since the same batch of

transfected cells are used for this comparison, and the total read counts are normalized to the geno-

mic DNA, the relative loss of paused Pol II is constant and independent of transfection efficiency.

Indeed, we found that these measurements were highly reproducible across biological replicates,

although the reproducibility was somewhat lower with shorter treatment times of triptolide, presum-

ably because small experimental fluctuations have a larger effect. To compare two constructs, we

then determined the difference of triptolide-induced Pol II loss between the mutant construct and

the wild-type counterpart. These calculations show that replacing the downstream region in our pro-

moters increased the half-life of paused Pol II around 2-fold (Figure 3C).
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Taken together, these results confirm that downstream promoter sequences indeed influence the

stability of Pol II pausing and we will now refer to MTE, DPE and PB collectively as pausing elements.

We next focused on the role of the other TFIID-bound regions in Pol II pausing.

An upstream region with a TATA box may reduce paused Pol II stability
The TATA box is often enriched among promoters with the lowest amount of Pol II pausing

(Chen et al., 2013; Day et al., 2016; Gaertner et al., 2012; Shao and Zeitlinger, 2017), and there

is evidence in mammalian cells that it promotes the release of paused Pol II (Amir-Zilberstein et al.,

2007; Montanuy et al., 2008). However, some promoters, including the hsp70 promoter, contain a

TATA box and yet show a strong pausing profile (Buckley et al., 2014; Gilchrist et al., 2010;

Kwak et al., 2013), questioning the simple model of TATA promoting pause release.

To clarify the correlation between the presence of TATA or other core promoter elements and

the stability of Pol II pausing, we first performed a genome-wide data analysis (Figure 4A and Fig-

ure 4—figure supplement 1). We scored each core promoter element based on the presence of

consensus sequence at the expected promoter position, allowing for one mismatch: TATA box (STA-

TAWAWR), Inr (TCAKTY), and pausing elements (CSARCSSA, KCGGTTSK or KCGRWCG). We then
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Figure 3. Changes in downstream promoter sequences alter paused Pol II stability. (A) The pepck and Act5C

downstream sequences were replaced with that from the stably paused promoter pk or dve (fusion site: 8 bp after

the TSS). (B) Pol II ChIP-nexus data on the plasmids after transfection into Kc167 cells with or without treatment

with triptolide (TRI) for 5 min. The wild-type pepck promoter shows a strong reduction of paused Pol II. At the

pepck-pk-down and pepck-dve-down fusion promoters, the same TRI treatment did not reduce paused Pol II to

the same extent as at the wild-type promoter, suggesting an increase in the paused Pol II stability as a result of

changing the downstream promoter sequence. (C) To quantify the difference in paused Pol II stability between

different constructs, the ratio of paused Pol II before and after TRI treatment is calculated using two biological

replicates. The ratio for the wild-type promoter is then normalized to 1 (light green), and the relative change in this

ratio for the fusion promoter is shown on the right (dark green). Error bars refer to the standard error of the mean

(TRI treatment: 5 min for all promoters).

DOI: https://doi.org/10.7554/eLife.41461.010

The following figure supplement is available for figure 3:

Figure supplement 1. Downstream promoter sequences influences Pol II pausing at Act5C.

DOI: https://doi.org/10.7554/eLife.41461.011
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analyzed how their presence, alone or in pairwise combination, is correlated with the half-lives of

paused Pol II that we measured previously (Shao and Zeitlinger, 2017).

As expected, promoters with a pausing element or an Inr tended to have a long Pol II half-life

(median ~25 min) and promoters with both elements displayed an even longer half-life (median ~30

min), consistent with them functioning together (Figure 4A and Figure 4—figure supplement 1).

Also consistent with previous findings (Chen et al., 2013; Day et al., 2016; Shao and Zeitlinger,

2017), any combination that contained a predicted TATA box showed a shorter median half-life of
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DOI: https://doi.org/10.7554/eLife.41461.012

The following figure supplement is available for figure 4:

Figure supplement 1. Correlation between paused Pol II half-life and core promoter elements using a mutually exclusive model.

DOI: https://doi.org/10.7554/eLife.41461.013
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paused Pol II (medians 15–19 min). For example, the median half-life of promoters with a pausing

element decreased from ~25 min to ~15 min in the presence of TATA (Wilcoxon p<10�4).

To test whether the TATA box robustly destabilized paused Pol II, we then replaced the entire

upstream sequence of the TATA-less promoters pk, comm2 and dve with that of the TATA-contain-

ing promoter Act5C (Figure 4B). We reasoned that replacing a larger region will make it more likely

that the added TATA box is functional within the larger promoter context. When we then analyzed

the stability of Pol II pausing after triptolide treatment (1 hr for pk and dve, 40 min for comm2), we

observed reduced Pol II in all constructs as compared to the wild-type promoter (Figure 4C and D

and Figure 5—figure supplement 1). However, the effect was relatively small for the comm2 and

dve promoter and only the pk promoter showed a strong, almost two-fold, reduction in paused Pol

II.

To determine whether this effect was due to the TATA box, we then performed a much smaller

alteration and replaced the 7 bp sequence located 31 bp upstream of the transcription start site

with a canonical TATA-box sequence (TATAAAA) (Figure 4B). We found that in the pk promoter

(but not the comm2 and dve promoter), this small change indeed reduced the stability of Pol II paus-

ing, albeit to a lesser extent than when the entire upstream region was replaced (Figure 4C and D

and Figure 5—figure supplement 1). This suggests that the TATA box may indeed play a role in

destabilizing paused Pol II, but that the overall promoter context plays an important role, too.

The Inr strongly contributes to the stability of Pol II pausing
To better understand how the TATA box may promote pause release in some promoter contexts,

we turned our attention to the Inr. The Inr functions synergistically with the TATA box in transcription

if the two elements are optimally spaced from each other (Emami et al., 1997; Malecová et al.,

2007; O’Shea-Greenfield and Smale, 1992; Xu et al., 2011), but on the other hand, the Inr is over-

all more highly enriched among highly paused genes (Gilchrist et al., 2010; Hendrix et al., 2008).

This raises the question whether the Inr functions together with TATA in pause release or whether it

plays a role in Pol II pausing together with the pausing elements.

To test whether an upstream TATA-containing region is dependent on the Inr, we took the dve

promoter, which only weakly responded to the TATA-region replacement and swapped both the

upstream region and the Inr with the sequences from the TATA-containing Act5C promoter

(Figure 5A). Indeed, this replacement resulted in a strong, more than three-fold reduction in the sta-

bility of Pol II pausing (Figure 5B and C), suggesting that the type of Inr made a critical difference in

this promoter context. However, even when we only replaced the Inr and not the upstream region in

the dve promoter, we also observed a strong reduction in Pol II pausing stability (Figure 5B and C).

These results suggest that the Inr sequence itself is an important determinant of Pol II pausing, even

independently of the upstream TATA box.

Highly paused promoters and TATA promoters contain different Inr
variants
The observation that the Inr sequence itself is important for pausing prompted us to perform a

genome-wide search for Inr variants that may preferentially promote or destabilize Pol II pausing.

For this purpose, we compared a strict set of naturally occurring TATA-containing promoters that

have a relatively short paused Pol II half-life (<30 min) with those of stably paused promoters without

a TATA box (half-life >= 60 min). The results revealed a significant difference in the Inr sequence

between the two promoter types (Figure 6A and B). The Inr sequence surrounding the first tran-

scribed base of stably paused promoters is best described by the motif TYAGTY (Figure 6B left).

In contrast, Inr sequences of TATA-containing promoters are more degenerate with frequent mis-

matches to the Inr consensus sequences (Figure 6B right). These mismatches may even occur at the

A, which is the first transcribed base (the +1). However, the most striking difference is that the con-

sensus Inr of stably paused promoters contains a G at the next position (the +2). Stably paused pro-

moters contain a G in 90% of cases, while TATA-containing promoters have a G at this position in

only 26% (p<10�46). This raises the possibility that the G at the +2 position of the Inr, which we refer

to as Inr-G, plays an important role in stabilizing Pol II pausing.
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The Inr-G variant plays a dominant role in stabilizing Pol II pausing
The discovery of the Inr-G variant prompted us to revisit our earlier analysis on how different combi-

nations of promoter elements correlate with the half-life of paused Pol II. Strikingly, when we distin-

guished between Inr-G and Inr-nonG variants, the presence of the Inr-G variant correlated by far the

strongest with Pol II pausing (Figure 7A and B and Figure 7—figure supplement 1). Promoters

with an Inr-G variant had a median Pol II half-life of ~44 min, compared to ~14 min for promoters

with the Inr-nonG variant (Wilcoxon p<10�48) or ~18 min for promoters with a pausing element (Wil-

coxon p<10�24). When the Inr-G variant was found in combination with a pausing element, the
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Figure 5. The initiator sequence plays an important role in Pol II pausing. (A) Experimental series on the dve

promoter testing the role of the Inr in conjunction with a TATA-containing region. Either only the upstream region

was replaced with that of the Act5C promoter (fusion site 7 bp before the TSS), the upstream region and the Inr

were replaced (fusion site 8 bp after the TSS), or only the Inr was replaced (16 bp region around the TSS). (B) Pol II

ChIP-nexus profiles under control conditions and after treatment with triptolide (TRI) for 1 hr show a strong

reduction of paused Pol II after replacing the Inr sequence. (C) Quantification of the relative changes in paused Pol

II stability for all fusion promoters relative to the wild-type promoter (TRI treatment: 1 hr for all the promoters).

DOI: https://doi.org/10.7554/eLife.41461.014

The following figure supplement is available for figure 5:

Figure supplement 1. Effect of TATA insertion at comm2 and dve.

DOI: https://doi.org/10.7554/eLife.41461.015
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median Pol II half-life was almost 60 min (compared to ~14 min for the Inr-nonG variant, Wilcoxon

p<10�62). This suggests that while the pausing elements contribute to Pol II pausing, they strongly

depend on the Inr-G variant, which overall has the strongest effect on Pol II pausing.

Interestingly, the presence of TATA was still correlated with shorter Pol II half-lives (median ~13

min), but the variant of Inr that was present made a strong difference (Figure 7A and Figure 7—fig-

ure supplement 1). While promoters with a combination of TATA and Inr-nonG had slightly shorter

half-lives (median ~11 min), TATA in combination with the Inr-G variant showed very stable Pol II

pausing (median ~59 min, Wilcoxon p<10�7). This suggests that the Inr acts dominantly over TATA

in its effect on Pol II pausing, which explains our earlier observations that introducing a TATA

upstream region alone only had a small effect on stably paused promoters.

These results strongly suggest that the G at the +2 position of the Inr is critical for stable Pol II

pausing. To validate this experimentally, we specifically mutated the G into A or T at three stably

paused promoters (dve, pk and the synthetic promoter SCP) and performed Pol II ChIP-nexus under

control and triptolide treated conditions (1 hr treatment for dve and pk, 30-min treatment for SCP)

(Figure 7B–D and Figure 7—figure supplement 2). Importantly, our mutations did not reduce the
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paused Pol II half-life longer than 60 min) are shown on the left as colored letters for a 100 bp window centered on
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DOI: https://doi.org/10.7554/eLife.41461.016
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overall transcription levels (Figure 7—figure supplement 3), consistent with in vitro studies suggest-

ing that the G is not important for transcription efficiency (Lo and Smale, 1996).

Strikingly, we observed a dramatic reduction in the stability of paused Pol II in the mutated con-

structs relative to the wild-type construct (Figure 7C and D). The dve promoter showed an almost

five-fold decrease when mutated to either T or A. Even the pk and SCP promoters, which have more

downstream pausing elements (Table S1) showed a ~ 2 fold reduction. These results show that the G

in the Inr is indeed critical for stable Pol II pausing in Drosophila. More generally, this discovery dem-

onstrates that reporter ChIP-nexus can be used to analyze the role of promoter sequences in Pol II

pausing and uncover previously unknown roles of promoter elements.
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Figure 7. The G at Inr + 2 position is critical for stable Pol II pausing. (A) Analysis of paused Pol II half-lives as a function of core promoter element

combinations after separating the Inr sequences into those that contain a G at position +2 (Inr-G) versus those that do not contain a G at this position

(Inr-nonG). Median paused Pol II half-life (left), promoter numbers (right) and boxplot of their distribution (bottom, median in red) are shown for

promoters with different combinations of core promoter elements. The promoters only contain the indicated promoter element, excluding any other

promoter element (e.g. the 491 promoters with pausing elements and Inr-G variant do not contain TATA box). Similar results were obtained using a

non-mutually exclusive model (Figure 7—figure supplement 1). Note that strong Pol II pausing was observed in all combinations that contain the

Inr-G variant. Results from testing between combinations using the Wilcoxon rank test are shown in Table S4. (B) Experimental strategy to test the

effect of mutating the G at Inr + 2 position of the Inr to T or A at the stably paused promoters dve, pk and the synthetic Super Core Promoter (SCP). (C)

Pol II ChIP-nexus profiles after treatment with triptolide (TRI) for 1 hr show a strong reduction in Pol II pausing after the G was mutated at the dve

promoter. (D) Quantification of the relative changes in paused Pol II stability for all fusion promoters relative to the corresponding wild-type promoter.

Error bars are from replicate experiments. The duration of TRI treatment was 1 hr for pk and dve derived promoters, 30 min for SCP derived promoters.

DOI: https://doi.org/10.7554/eLife.41461.017

The following figure supplements are available for figure 7:

Figure supplement 1. Correlation between paused Pol II half-life and Inr variants using a non-mutually exclusive model.

DOI: https://doi.org/10.7554/eLife.41461.018

Figure supplement 2. Mutating the G at Inr + 2 position reduces Pol II pausing at SCP and pk.

DOI: https://doi.org/10.7554/eLife.41461.019

Figure supplement 3. Transcript level changes after altering the promoter sequence.

DOI: https://doi.org/10.7554/eLife.41461.020
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Discussion

The Inr plays an important role in stable Pol II pausing
Genome-wide correlations have suggested a role for promoter sequences in Pol II pausing

(Chen et al., 2013; Gaertner et al., 2012; Gilchrist et al., 2010; Hendrix et al., 2008;

Nechaev et al., 2010; Shao and Zeitlinger, 2017), but functional data supporting a causal role for

these sequences had been largely lacking. Here, we found that Pol II pausing is remarkably well reca-

pitulated on a plasmid and that its stability can be measured on the plasmid by treatment with trip-

tolide. By taking advantage of this assay, which we call reporter-ChIP-nexus, we were able to test

the contribution of individual core promoter elements to Pol II pausing. We found that replacement

of core promoter regions bound by TFIID tended to change the stability of paused Pol II in the

expected direction, but the overall sequence context of the promoter was still important.

Most notably, we found that the Inr sequence played a strong role in the stability of Pol II paus-

ing. This is surprising because the Inr sequence is thought to function synergistically with both the

TATA box and the pausing elements (Juven-Gershon and Kadonaga, 2010), which have opposite

effects on the stability of Pol II pausing. Identifying the preferred Inr sequences in promoters with a

TATA box and with pausing elements resolved this conundrum. Promoters with stable Pol II pausing

are highly enriched for Inr sequences resembling the consensus TYAGTY, which closely matches the

Inr derived from functional studies (TCAKTY) (Hultmark et al., 1986; Purnell et al., 1994) and from

computational analyses (TCAGTY and TCAGTT) (FitzGerald et al., 2006; Ohler et al., 2002;

Stark et al., 2007). This in turn suggests that a strong consensus Inr sequence promotes Pol II

pausing.

Promoters with a TATA box, in contrast, tend to have more degenerate Inr sequences. This

explains why previous genomic sequence analyses have found these two elements to co-occur rela-

tively infrequently in both Drosophila and human promoters (Chen et al., 2013; FitzGerald et al.,

2006; Jin et al., 2006; Ohler et al., 2002; Vo Ngoc et al., 2017a), although biochemical experi-

ments clearly show that they function synergistically in transcription (Emami et al., 1997;

Malecová et al., 2007; O’Shea-Greenfield and Smale, 1992; Xu et al., 2011).

This difference in Inr sequence between promoter types is best reflected in the presence or

absence of a G at the +2 position. Although G and T at this position are equally functional in tran-

scription assays in vitro (Lo and Smale, 1996), stably paused promoters predominantly contain the

Inr-G variant. Mutating this G to an A or T drastically reduced Pol II pausing in our assay, suggesting

that the G is indeed important for stable Pol II pausing.

It is therefore possible that the degenerate Inr-nonG sequences in TATA-containing promoters

represent a tradeoff. On one hand, these Inr sequences probably have sufficient sequence informa-

tion to influence start site selection and promote TATA-dependent transcription. On the other hand,

they may be weakened in their ability to stabilize Pol II pausing and thereby allow a mode of tran-

scription with reduced Pol II pausing. Alternatively, TATA-containing promoters may function equally

well with or without Pol II pausing, and therefore, the Inr sequences in these promoters may not

have been under strong purifying selection during evolution.

Interestingly, an Inr-G variant (TCAGTT) was identified in comparative Drosophila genomics analy-

ses as the most conserved Inr sequence (Stark et al., 2007). This suggests that the G variant may be

under evolutionarily selection in paused promoters, consistent with Pol II pausing playing a critical

role in keeping the promoter open (Gilchrist et al., 2008) and achieving coordinated gene expres-

sion during development (Lagha et al., 2013).

It is important to point out that while the G is conserved in Drosophila, human Inr sequences are

often more degenerate and do not show a significant enrichment of G at the +2 (Carninci et al.,

2006; Frith et al., 2008; Lo and Smale, 1996; Vo Ngoc et al., 2017a). However, there are also Inr

variants with a much longer consensus sequence (Hendy et al., 2017; Yarden et al., 2009). It is

therefore possible that human Inr variants also differentially affect Pol II pausing.

Promoter elements could be linked to Pol II pausing through TFIID
The promoter elements we tested here for Pol II pausing have traditionally been studied for their

role in promoter recognition and transcription initiation by TFIID (Burley and Roeder, 1996;

Lee and Young, 2000). TFIID is a large, flexible multi-subunit complex that can simultaneously bind
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to the TATA box, the Inr, and the pausing elements (Louder et al., 2016; Patel et al., 2018),

thereby promoting the assembly of the transcription initiation complex. More recent evidence, how-

ever, suggests that TFIID has a function beyond initiation. For example, there is accumulating evi-

dence that TFIID promotes Pol II re-initiation (Joo et al., 2017; Oelgeschläger et al., 1998;

Yudkovsky et al., 2000; Zhang et al., 2015). Furthermore, genome-wide ChIP-nexus data show

that TFIID binding extends beyond the pausing position in vivo (Shao and Zeitlinger, 2017), raising

the intriguing possibility that TFIID plays a role in the coordination between consecutive rounds of

Pol II initiation, pausing, and pause release.

If TFIID remains bound after initiation, it is possible that it influences the stability of Pol II pausing

in a promoter-specific fashion. While TFIID can make contacts with all promoter elements on the

super core promoter (Louder et al., 2016; Patel et al., 2018), natural promoters contain fewer pro-

moter element consensus sequences, such that the strength and position of TFIID-promoter contacts

may vary between promoters. We therefore speculate that the core promoter elements recognized

by TFIID contribute to the dynamics of Pol II transcription by influencing how Pol II enters and

remains in the pausing position (Figure 8). If TFIID binds tightly to the Inr and downstream promoter

elements, Pol II may initiate and traverse the early transcribed region more slowly, and hence may

be more likely to become stably paused (Figure 8A). In contrast, if TFIID is more tightly bound to

the promoter upstream through the TATA box, then Pol II initiation and early transcription may

occur in a less constrained fashion, which may promote pause release (Figure 8B). These tight DNA

contacts in the presence of the TATA box is supported by biochemical experiments (Lee et al.,

1991; Starr and Hawley, 1991), as well as more recent single-molecule footprinting studies

(Krebs et al., 2017). In summary, although all core promoter elements may help recruit TFIID, they

may differentially affect the passage of Pol II and its release into productive elongation, dependent

on their location at the promoter.

Future perspective
We found that reporter-ChIP-nexus is a useful method for studying the relationship between pro-

moter sequence and Pol II pausing. This plasmid-based assay recapitulates the endogenous Pol II

dynamics at the promoters tested and has sufficient sensitivity to identify changes in Pol II pausing

upon promoter sequence alterations. The simplicity of the assay will no doubt be helpful for further

studies on the roles of individual promoter sequences in Pol II pausing, including those of promoter

types not studied here.

In order to perform a more high-throughput analysis on promoter sequences, some improve-

ments in the assay will be beneficial. First, we currently sequence Pol II ChIP-nexus reads genome-

wide in order to capture the reads from the plasmid. Any prior enrichment for plasmid sequences

will therefore lower the cost of sequencing. Second, if genomic reads can no longer be reliably used
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Figure 8. Model of how promoter sequences may influence Pol II pausing through TFIID Since the core promoter

elements that we analyzed are bound by TFIID, we hypothesize that TFIID affects Pol II pausing dependent on the

position it binds to the promoter. (A)At stably paused promoters, pausing elements and consensus Inr sequences

with a G at +2 position promote TFIID-downstream DNA interactions, which prolong Pol II pausing. (B)At TATA-
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as internal control, a control plasmid that monitors transfection efficiency would be useful. Finally,

the assay will greatly benefit from automation. This would not only enable more high-throughput

analyses but also improve the scope of the assay. Currently, the accuracy and reproducibility of the

assay is higher for promoters with longer Pol II half-lives since longer triptolide treatment times

reduce experimental fluctuations in handling and drug penetration. If automated, the assay would

allow more tightly spaced time-course experiment in multiple replicates, which could more accu-

rately distinguish smaller differences in Pol II half-lives.

Taken together, reporter-ChIP-nexus promises to open new possibilities for measuring the stabil-

ity of Pol II pausing at individual promoter sequences in the future. Together with complementary

approaches such as live imaging analyses, such studies will contribute to a better understanding of

the relationship between promoter sequence, Pol II pausing, and the dynamic production of tran-

scripts over time.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Antibody Rabbit polyclonal
anti-Rpb3

Julia Zeitlinger Lab Zeitlinger Lab #163185–50 10 ug

Antibody Rabbit polyclonal
anti-H3K4me3

Cell Signaling #9727 10 ug

Strain, strain
background
(E. coli)

NEB 5-alpha
Competent E. coli
(High Efficiency)

New England Biolabs #C2987H

Strain, strain
background
(E. coli)

One Shot ccdB
Survival 2 T1R
Competent Cells

ThermoFisher Scientific #A10460

Chemical Chloroform Sigma-Aldrich #C2432

Commercial
assay or kit

CircLigase
ssDNA Ligase

Illumina (Epicentre) #CL4115K

Chemical
compound

DMSO Sigma-Aldrich #276855

Chemical
compound

Dynabeads
Protein A

Life Technologies #100-08D

Chemical
compound

Dynabeads
Protein G

Life Technologies #100-04D

Commercial
assay or kit

FastDigest
BamHI

ThermoFisher Scientific #FERFD0054

Chemical
compound

FuGENE HD
reagent

Promega #E2311

Chemical
compound

HyClone SFX-Insect
Cell Culture Media

ThermoFisher Scientific #SH3027802PM

Commercial
assay or kit

Klenow Fragment
(3’ to 5’ exo-)

New England Biolabs #M0212S

Commercial
assay or kit

Lambda
Exonuclease

New England Biolabs #M0262L

Chemical
compound

Opti-MEM Reduced
Serum Medium

ThermoFisher Scientific #31985062

Chemical
compound

Phenol: Chloroform:
iso-Amyl alcohol

VWR #97064–824

Chemical
compound

Protease Inhibitor
Cocktail tablets
EDTA-free

Roche Diagnostics Corporation #5056489001

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Commercial
assay or kit

Proteinase K Life Technologies #25530–049

Commercial
assay or kit

recJ New England Biolabs #M0264L

Commercial
assay or kit

Restriction
emzyme AfeI

New England Biolabs #R0652S

Commercial
assay or kit

Restriction
emzyme
EcoRV-HF

New England Biolabs #R3195S

Commercial
assay or kit

Restriction
emzyme
SacI-HF

New England Biolabs #R3156S

Commercial
assay or kit

RNase A ThermoFisher Scientific #EN0531

Commercial
assay or kit

RNase H New England Biolabs #M0297S

Commercial
assay or kit

SuperScript II
Reverse
Transcriptase

ThermoFisher Scientific #18064014

Commercial
assay or kit

T4 DNA
Polymerase

New England Biolabs #M0203S

Chemical
compound

Triptolide TOCRIS Bioscience #3253

Chemical
compound

TRIzol Reagent ThermoFisher Scientific #15596026

Commercial
assay or kit

Direct-zol RNA
MiniPrep kit

Genesee #11–330

Commercial
assay or kit

Fast SYBR Green
Master mix

Life Technologies #4385612

Commercial
assay or kit

Gibson Assembly
Master Mix

New England Biolabs #E2611S

Commercial
assay or kit

High-Capacity
RNA-to-cDNA Kit

ThermoFisher Scientific #4387406

Commercial
assay or kit

IBI High Speed
Plasmid Mini Kit

MIDSCI #IB47101

Commercial
assay or kit

NEBNext
dA-tailing
module

New England Biolabs #E6053L

Commercial
assay or kit

NEBNext
end-repair
module

New England Biolabs #E6050L

Commercial
assay or kit

NEBNext Multiplex
Oligos for Illumina

New England Biolabs #E7335S

Commercial
assay or kit

Q5High-Fidelity
2X Master Mix

New England Biolabs #M0492L

Commercial
assay or kit

Q5 Site-Directed
Mutagenesis Kit

New England Biolabs #E0554S

Commercial
assay or kit

Quick Ligation Kit New England Biolabs #M2200L

Cell line
(D. melanogaster)

Kc167 cells DGRC #1

Cell line
(D. pseudoobscura)

ML83-63 cells DGRC #33

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Sequence-
based reagent

ChIP-nexus
oligos

(He et al., 2015) See Table S5

Sequence-
based reagent

Gene-specific 5’ RNA
sequencing oligos

This paper See Table S6

Recombinant
DNA reagent

Reporters used
in this study

This paper See Table S7
and S8

Software,
algorithm

Analysis code GitHub https://github.com/
zeitlingerlab/Shao_
eLife_2019

Methods
Reporter construction
The pAWG GFP reporter plasmid from the Drosophila Gateway cloning collection was used as the

backbone for the reporter plasmid. The Act5C core promoter (�41 to 103 bp around the transcrip-

tion start site, not including the upstream Act5C regulatory sequences, which is �2470 to �42 bp

from the transcription start site) and the downstream Gateway cloning cassette (sequence between

attR1 and attR2) were removed by digesting with the SacI and AfeI restriction enzymes. A 6 x UAS

sequence from pUASp (as found in DGRC #1189) was inserted between the SacI and Afel restriction

sites using Gibson Assembly Master Mix. The resulting plasmid pAWG-UAS has the Act5c upstream

regulatory region, 6 x UAS, a GFP coding sequence and an EcoRV restriction site between the UAS

sequences and the GFP coding region. Promoter sequences of interests were inserted into pAWG-

UAS at the EcoRV cutting site with Gibson Assembly Master Mix. Subsequent mutations of core pro-

moter sequences were performed with the Q5 site-directed site mutagenesis kit. For plasmid ampli-

fication and purification, the DNA was transformed into NEB 5-alpha Competent E. coli (High

Efficiency) or One Shot ccdB Survival 2 T1R Competent Cells and purified with IBI High Speed Plas-

mid Mini Kit. Clones were validated with Sanger sequencing using the sequencing primer GCACCG

TGACCATCACAGCATA. See Table S6 and S7 for detailed constructs descriptions and sequences.

Cell culture and transcription inhibitor treatment
D. melanogaster Kc167 cells (DGRC #1) were grown in SFX media at 25˚C. D. pseudoobscura ML83-

63 cells (DGRC #33) were grown in M3 +BPYE + 10% FCS media at 25˚C. Transcription inhibitors

were added directly into culture media. Cells were treated with 500 mM Triptolide (TOCRIS Biosci-

ence Cat. No. 3253 dissolved in DMSO) as done previously (Shao and Zeitlinger, 2017). Equivalent

amounts of DMSO treatment (2% v/v) were used as control. To best capture the stability of paused

Pol II, cells were treated with Triptolide for different time after transfecting with different reporter

constructs. Refer to the main text and figure legends for the treatment duration.

ChIP-nexus
For each ChIP-nexus experiment, 107 Kc167 cells or ML83-63 cells were fixed with 1% formaldehyde

in culturing media at room temperature for 10 min with rotation. Fixed cells were washed with cold

PBS, incubated with Orlando and Paro’s Buffer (0.25% triton X-100, 10 mM EDTA, 0.5 mM EGTA, 10

mM Tris-HCl pH 8.0, with freshly added Protease Inhibitor) for 10 min at room temperature with

rotation, and then centrifuged and re-suspended in ChIP Buffer (10 mM Tris-HCl, pH 8.0; 140 mM

NaCl; 0.1% SDS; 0.1% sodium deoxycholate; 0.5% sarkosyl; 1% Triton X-100, with freshly added Pro-

tease Inhibitor). Sonication was performed with a Bioruptor Pico for five rounds of 30 s on and 30 s

off. Chromatin extracts were then centrifuged at 16000 g for 5 min at 4˚C, and supernatants were

used for ChIP.

To couple Dynabeads with antibodies, 50 ml Protein A and 50 ml Protein G Dynabeads were used

for each ChIP-nexus experiment and washed twice with ChIP Buffer. After removing all the liquid,

Dynabeads were resuspended in 400 ml ChIP Buffer. 10 mg antibodies were added, and tubes were
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incubated at 4˚C for 2 hr with rotation. After the incubation, antibody-bound beads were washed

twice with ChIP Buffer.

For chromatin immunoprecipitation, chromatin extracts were added to the antibody-bound beads

and incubated at 4˚C overnight with rotation and then washed with Nexus washing buffer A to D

(wash buffer A: 10 mM Tris-EDTA, 0.1% Triton X-100, wash buffer B: 150 mM NaCl, 20 mM Tris-HCl,

pH 8.0, 5 mM EDTA, 5.2% sucrose, 1.0% Triton X-100, 0.2% SDS, wash buffer C: 250 mM NaCl, 5

mM Tris-HCl, pH 8.0, 25 mM HEPES, 0.5% Triton X-100, 0.05% sodium deoxycholate, 0.5 mM

EDTA, wash buffer D: 250 mM LiCl, 0.5% IGEPAL CA-630, 10 mM Tris-HCl, pH 8.0, 0.5% sodium

deoxycholate, 10 mM EDTA). End repair and dA-tailing were performed using the NEBNext End

Repair Module and the NEBNext dA-Tailing Module. ChIP-nexus adaptors with mixed fixed barco-

des (CTGA, TGAC, GACT, ACTG) were ligated with Quick T4 DNA ligase and converted to blunt

ends with Klenow fragment and T4 DNA polymerase. The samples were treated with lambda exonu-

clease and RecJf exonuclease for generating Pol II footprints at high resolution. After each enzymatic

reaction, the chromatin was washed with the Nexus washing buffers A to D and Tris buffer (10 mM

Tris, pH 7.5, 8.0, or 9.5, depending on the next enzymatic step).

After RecJf exonuclease digestion, the chromatin was eluted and subjected to reverse crosslink-

ing and ethanol precipitation. Purified single-stranded DNA was then circularized with CircLigase,

annealed with oligonucleotides complementary to the BamHI restriction site and linearized by BamHI

digestion. The linearized single-stranded DNA was purified by ethanol precipitation and subjected

to PCR amplification with NEBNext High-Fidelity 2X PCR Master Mix and ChIP-nexus primers. The

ChIP-nexus libraries were then gel-purified before sequencing with Illumina NextSeq 500.

Reporter-ChIP-nexus
To transform cells with the reporter plasmid, 1.5 � 107 Kc167 cells were diluted in 10 ml SFX media

and seeded into a 10 cm cell culture dish. A mixture of 2.5 mg reporter plasmids, 20 ml FuGENE HD

reagent and 500 ml Opti-MEM Reduced Serum Medium was then added to the cell culture. Trans-

fected cells were cultured for 48 hr at 25˚C to allow proper expression of the reporter. ChIP-nexus

was performed on the whole cell extracts from transfected cells following standard ChIP-nexus pro-

cedure as described above. After sequencing, reporter-ChIP-nexus samples were aligned to the

combined genome of dm3 and the specific reporter construct. Only reads that uniquely aligned to

the reporter sequence were used for analysis and PCR duplicates with the same ChIP-nexus barcode

were removed.

Reporter expression quantification
Expression of the reporter was quantified by calculating the expression of GFP RNA from the

reporter over the expression of the endogenous RNA from the RpL30 locus, after normalizing for

the difference in copy number between the reporter and the endogenous genome.

For cDNA preparations, 5 � 105 transfected cells were transferred into 1.5 ml tubes and washed

with cold PBS. After removing all liquid, cells were lysed and incubated with 500 ml TRIzol Reagent

at room temperature for 5 min. Total RNA was then extracted with 100 ml Chloroform and purified

with a Direct-zol RNA MiniPrep kit. cDNA was generated with a High-Capacity RNA-to-cDNA Kit.

For DNA preparations, 5 � 105 transfected Drosophila Kc167 cells were transferred to 1.5 ml

tubes and washed with cold PBS. After removing all liquid, cells were lysed with 50 ml ChIP buffer.

Cell lysates were incubated with 150 Elution buffer (50 mM Tris pH 8.0, 10 mM EDTA, 1% SDS), 100

ml TE buffer (50 mM Tris pH 8.0, 1 mM EDTA) and 4 ml RNAse A for 30 min at 37˚C. Then, 2 ml Prote-

ase K was added to the mixture and incubated at 65˚C for 2 hr. The DNA was then purified with an

ethanol precipitation. qPCR on both the cDNA and DNA was performed using Fast SYBR Green

Master Mix and primers against GFP and RpL30. The relative expression of the reporter was calcu-

lated using the following equations.

GFPexpression ¼ 2CtðGFPDNAÞ�CtðGFPcDNAÞ

RpL30 expresssion ¼ 2CtðRpL30DNAÞ�CtðRpL30cDNAÞ

GFPrelativeexpression ¼ ðGFPexpressionÞ=RpL30expression
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For this analysis, cDNA was prepared from two to three biological replicates (cells were trans-

fected and processed on different dates) using 5 � 105 transfected cells each. Two technical repli-

cates (the same biological sample were split into two and processed side by side) were performed

during qPCR.

Gene-specific 5’ RNA sequencing
This method is similar to 5’ RNA amplification of cDNA ends (RACE) but uses reagents and steps

from ChIP-nexus. Briefly, total RNA was isolated from 5 � 105 transfected cells as above, and cDNA

was generated from the GFP RNA using SuperScript II Reverse Transcriptase and a primer against

GFP that has partial TruSeq P5 sequences at the 5’ end (GFP_reversetx_primer). The cDNA was puri-

fied by treatment with RNAse A and RNAse H at room temperature for 30 min, followed by ethanol

precipitation. The cDNA circularization, cutting and PCR amplification was then performed as in the

ChIP-nexus protocol (thus without rolling circle amplifications), except that a new BamHI cutting

oligo (reversetx_BamHI_cutting) was annealed before BamHI cutting, and a barcoded P7-GFP fusion

primer (reversetx_barcode_primer_#1) was used in the PCR. After sequencing with TruSeq primers,

the reads were aligned to the dm3-reporter combined genome, and the first bases of the P5

sequenced reads were recorded as the stop bases of the reverse transcriptase and correspond to

the 5’ ends of the GFP RNA from the reporter plasmid.

Quantification and statistical analysis
Normalization of Pol II signal on the plasmid
Due to variations in the transfection efficiency, absolute Pol II signal on different plasmids is not com-

parable. As a result, paused Pol II stability needs to be accessed by comparing Pol II signal under

control and triptolide-treated conditions. Because control and triptolide-treated samples come from

the same pool of transfected cells, they have the same transfection efficiency and the same plasmid/

Kc167 genome ratio. Therefore, Pol II signal on the plasmids under control and triptolide-treated

conditions can be directly compared after normalizing for read counts.

The changes in Pol II signal after triptolide treatment is calculated in the following way:

1. Each sample is first normalized to reads/millions to account for differences in read coverage.
2. For each sample, the total Pol II signal is calculated in a 301 bp window around the promoter

region on the plasmid (termed Total_Pol_sig).
3. The change in Pol II signal on the plasmid in response to triptolide treatment is then calculated

as the ratio between Total_Pol_sig from the triptolide-treated sample over Total_Pol_sig from
the corresponding DMSO-treated control sample.

It is likely that this method underestimates the changes of Pol II signal between control and trip-

tolide-treated condition since the total occupancy of Pol II is slightly reduced after triptolide treat-

ment (Shao and Zeitlinger, 2017), yet we normalize both samples to equal read counts. However,

since the relative loss of Pol II after triptolide treatment is similar across all samples in the Kc167

genome, the relative differences in the above calculated ratio between different plasmids is pre-

served. For this analysis, two biological replicates (cells were transfected and processed on different

dates) were performed using 107 transfected cells each.

Correlation between paused Pol II half-lives and core promoter elements
In Figure 4A and Figure 4—figure supplement 1, promoters with previously measured paused Pol

II half-life (Shao and Zeitlinger, 2017) were separated into groups with either one or two of the fol-

lowing core promoter elements: TATA box (STATAWAWR), Inr (TCAKTY) and pausing elements

(CSARCSSA, KCGGTTSK or KCGRWCG). Only motif matches at the expected canonical position and

with up to one mismatch were allowed (Table S1). In a mutually exclusive model (Figure 4—figure

supplement 1), promoters with TATA-box and Inr cannot contain pausing elements, while in a non-

mutually exclusive model (Figure 4A), pausing elements are allowed.

The same method was applied to Figure 7A,B (using a mutually exclusive model) and Figure 7—

figure supplement 1 (using a non-mutually exclusive model), except that promoters were further

separated into containing Inr-G or Inr-nonG variants based on whether a G is present at the +2

position.
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Sequence analysis of TATA promoters and stably paused promoters
TATA promoters and stably paused promoters were defined using the length of paused Pol II half-

life (Shao and Zeitlinger, 2017) and the presence or absence of the TATA box sequence (STATA-

WAWR with up to one mismatch) at 40 to 20 bp upstream of the transcription start site. TATA pro-

moters have the TATA box sequence and paused Pol II half-lives shorter than 30 min, whereas stably

paused promoters lack a detectable TATA box sequence and have paused Pol II half-lives longer

than 60 min. In Drosophila Kc167 cell, 132 promoters were defined as TATA promoters and 490 pro-

moters were defined as stably paused promoters.

In Figure 5A, DNA sequences at TATA promoters (n = 132) and stably paused promoters

(n = 132, randomly selected from the original 490 promoters) were obtained from the dm3 genome

and represented as heatmap. The consensus motif for the Inr sequence in Figure 5B was generated

using the R package seqLogo.

Data and software availability
Raw and processed data associated with this manuscript are deposited in GEO under the accession

number GSE116244 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116244).

All data analysis performed in this paper, including raw data, processed data, software tools, and

analysis scripts, have been reproduced in a publicly accessible Linux virtual machine. Instructions for

accessing the virtual machine can be found at http://research.stowers.org/zeitlingerlab/data.html.

The analysis code is available on GitHub at https://github.com/zeitlingerlab/Shao_eLife_

2019 (Shao, 2019 ; copy archived at https://github.com/elifesciences-publications/Shao_eLife_

2019).
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